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Dedicated to Professor Cristián U. Śanchez on the occasion of his 60th birthday.

Abstract

We consider harmonic maps of Riemann surfaces in De Sitter space-timesS
n
1, n ≥ 3 with maximal

isotropy dimension, also called superconformal. Harmonic sequences are constructed for these maps
which are used to study their geometry. Global properties such as (linear) fullness and rigidity are
discussed and polar maps of superconformal harmonic into odd-dimensional De Sitter space-times are
studied. Lastly a characterization of superconformal minimal immersed tori is obtained generalizing
a result by Sakaki [M. Sakaki, Space-like minimal surfaces in four-dimensional Lorentzian space
forms, Tsukuba J. Math. 25 (2) (2001) 239–246].
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the last two decades there has been much progress in the study of harmonic maps
from Riemann surfaces into compact symmetric spaces and Lie groups (see, for instance,
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[4,5] and their bibliography). From a pure differential–geometric viewpoint, the concept of
harmonic map from a Riemann surface is a natural two-dimensional generalization of the
concept of geodesic. In mathematical physics the interest in harmonic maps of Riemann
surfaces stems from its relation withσ-models. A classical solution of aσ-model is a
harmonic map or field into some (pseudo) Riemannian manifold. The study ofσ-models on
non-compact Lorentzian manifolds such as De Sitter space-timesS

n
1, and more generally

on pseudo-Riemannian symmetric spaces and non-compact Lie groups arise in connection
with problems of solid-state physics and has many other applications (see, for instance,[3]
and the bibliography therein).

In this article we deal with superconformal harmonic mapsf : M → S
n
1 of Riemann

surfaces into De Sitter space-timesS
n
1 of dimensionn ≥ 3. We call a mapf : M → S

n
1

superconformal if it has maximal isotropy dimensionr = n+1
2 − 1, where the notion of

isotropy dimension is (mutatis–mutandis) the same as that introduced by Burstall[4] to study
harmonic maps of Riemann surfaces into Euclidean spheresS

n. In this way superconformal
harmonic mapsf : M → S

n
1 can be considered as natural generalizations of the so-called

superconformal harmonic maps of Riemann surfaces into Euclidean spheresS
n introduced

by Bolton et al.[9] (see also[8,20]).
For example, superconformal harmonic maps of surfaces inS

4
1 arise as images of the

conformal Gauss map of immersed Willmore surfaces in the Euclidean three sphereS
3

andR
3 as shown by Palmer[21]. Alias and Palmer[1] also considered superconformal

minimal surfaces into four-dimensional Lorentz space forms and studied the behaviour of
their normal and Gaussian curvature. Recently Sakaki[22] obtained a generalization of the
so-called Ricci condition for superconformal minimal surfaces in four-dimensional Lorentz
space forms. However a study of superconformal harmonic surfaces in higher-dimensional
Lorentz space-forms seems still lacking.

Isotropic (i.e. infinite isotropy dimension) harmonic maps of Riemann surfaces intoS
n
1

were considered, for instance, by Ejiri[15] who proposed aBryant transformto construct
isotropic harmonic surfaces intoSn

1 generalizing Bryant’s method in[11]. Also a classifica-
tion of harmonic isotropic maps of Riemann surfaces intoS

n
1 with non-degenerate osculating

bundle was obtained by Erdem[16].
Our main goal here is to study geometric properties of superconformal harmonic maps

f : M → S
n
1 by means of harmonic sequences which are constructed for these maps. This

analytic tool allows us to study (linear) fullness properties, global rigidity and behaviour
of normal curvatures. A construction of the so-called polar maps (or higher order Gauss
transform) of superconformal harmonic maps into odd-dimensional targetsS

2m−1
1 is also

considered. Finally we give a characterization of superconformal minimal immersion of
tori in terms of the behaviour of the normal curvatures of the immersion, thus giving a
generalization of a recent result by Sakaki[22].

The paper is organized as follows. In Section2 we review some basic facts on the
geometry of Lorentz manifolds. In Section3the notion of isotropy dimension due to Burstall
[4] is applied to study harmonic maps of surfaces intoS

n
1, and a construction of harmonic

sequences for maps with isotropy dimension greater than 1 is given. Section4 deals with
(linear) fullness properties of superconformal harmonic maps. In Section5 we study the
geometry of the normal bundles of a superconformal harmonic mapfand use the information
of the harmonic sequence determined byf to compute the normal curvatures and study
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their behaviour. Section6 is devoted to study conditions under which two superconformal
harmonic maps from a fixed Riemann surface are congruent. Polar maps of superconformal
harmonic surfaces into odd-dimensional De Sitter space-times are defined and its main
properties are considered in Section7. Finally Section8 deals with a characterization
of superconformal minimal immersions of tori in terms of the normal curvatures of the
immersion. This is one possible generalization of a result of Sakaki[22].

A twistorial construction and stability properties of superconformal and isotropic har-
monic surfaces inSn

1 are considered in[18] and will appear elsewhere in due course.

2. Preliminaries

Let Ln be a Lorentz manifold with Lorentz metric〈, 〉. A map f : M → Ln from a
(pseudo)Riemannian manifoldM is harmonic if it is an extreme of the energy functional
E(f,D) = ∫

D
‖df‖2 dv for every compact subdomainD ⊆ M. It is shown that a mapf is

harmonic if and only if its tension field vanishes:

τ(f ) = 0 (1)

This is the Euler–Lagrange system associated to the energy functional. It is a semi-linear
(but not linear ifLn is not flat) system of partial differential equations which is elliptic if
M is Riemannian (cf.[14]).

Now if M is a Riemann surface, then a mapf : M → Ln is called (weakly) conformal
if for every local complex coordinatezonM,

〈∂f, ∂f 〉c ≡ 0, (2)

where〈 , 〉c denote the complex bilinear extension of the Lorentz metric, and∂ = ∂
∂z

. Call
a mapf : M → Ln space-likeif the pull-backf ∗〈 , 〉 of the ambient Lorentz metric is
positive definite on the set of pointsp ∈ M such that dfp is non-singular. It easily follows
that forn ≥ 3 every (weakly) conformal mapf : M → Ln is space-like.

Note that ifM is a orientable 2-manifold (i.e. a surface) andf : M → Ln is an immersion
(i.e. dfp is non-singular for everyp ∈ M) which is space-like then the pullbackf ∗〈 , 〉 is
a Riemannian metric onM which determines a Riemann surface structure onM such thatf
is a conformal immersion (see[19]). In this case if one considers onM the induced metric
g = f ∗〈 , 〉 thenf : M → Ln is an isometric minimal space-like immersion. A conformal
minimal immersionf : M → Ln is also calledstationary(cf. [2]).

LetRn+1
1 be the (n + 1)-dimensional Minkowski space-time equipped with the indefinite

non-degenerate Lorentz inner product of signature (n,1) given by

〈x, y〉 = x0y0 + x1y1 + · · · + xn−1yn−1 − xnyn (3)

for x = (x0, x1, . . . , xn) andy = (y0, y1, . . . , yn) in R
n+1
1 . According to relativity theory a

nonzerox ∈ R
n+1
1 is calledspace-likeif 〈x, x〉 > 0, time-likeif 〈x, x〉 < 0 andlight-like or

null if 〈x, x〉 = 0. A subspaceV ⊂ R
n+1
1 is called space-like if every nonzerov ∈ V is a

space-like vector.
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Let H ⊂ R
n+1
1 be an hyperplane then it can be obtained asH = {x : 〈x, h〉 = 0} for

someh ∈ R
n+1
1 . It is well known that the ambient Lorenz product〈 , 〉 induces onH an

inner product which is positive definite ifh is time-like, definite with signature (n − 1,1)
if h is space-like, and degenerate ifh is light-like, respectively. Note that ifh is light-like
H containsh andH is the tangent space of the light coneC = {x : 〈x, x〉 = 0}.

The (pseudo) Hermitian extension〈 , 〉 of the Lorentz inner product toCn+1 is given by

〈z,w〉 = z0w̄0 + z1w̄1 + · · · + zn−1w̄n−1 − znw̄n. (4)

LetCn+1
1 denote the complex vector spaceC

n+1 equipped with the (pseudo-Hermitian) inner
product(4). Then the complex bilinear extension of the Lorentz inner product is given by

〈z,w〉c = 〈z, w̄〉.

A complex vector subspaceW ⊂ C
n+1
1 will be called (complex)isotropic if 〈z,w〉c = 0

for anyz,w ∈ W .
The real quadricSn

1(R) = {x ∈ R
n+1
1 : 〈x, x〉 = R2} is known as the De Sitter space-time,

or pseudo-sphere of radiusR and dimensionn with constant sectional curvature 1/R2. The
ambient Lorentz inner product(3) of R

n+1
1 induces onSn

1(R) a Lorentz metric of signature
(n − 1,1) denoted also by〈 , 〉. In this wayS

n
1(R) becomes a Lorentz manifold on which

the Lie Group O(n,1) acts transitively by (pseudo) isometries.
Denote bySn

1 the De Sitter space-time of constant curvature one for short. It is easily
seen that a mapf : M → S

n
1 from a Riemann surface is harmonic if and only if it satisfies

∂∂̄f = −〈∂f, ∂f 〉f. (5)

We recall here Ejiri’s remarkable observation that as a consequence of Eq.(5), every har-
monic mapf : M → S

n
1 is real analytic with respect to complex local coordinates inM [15].

3. Superconformal harmonic maps

Given a harmonic mapf : M → S
n
1 with n ≥ 2 we follow Burstall[4] and define its

isotropy dimensionas the non-negative integerr for which the successive complex deriva-
tives off satisfy

〈∂αf, ∂βf 〉c = 0 for 1 ≤ α + β ≤ 2r + 1, withα, β ≥ 0,

〈∂r+1f, ∂r+1f 〉c �≡ 0.
(6)

It is not hard to check thatr so defined is independent of the choice of complex coordinates.
Note that according to this definition a nowhere conformal map has isotropy dimension
r = 0. On the contrary forn ≥ 3 every harmonic mapf : M → S

n
1 with isotropy dimension

r ≥ 1 is (weakly) conformal and hence a space-like map.
In order to study geometric properties of harmonic maps of surfaces intoS

n
1 we apply a

standard Gram-Schmidt orthogonalization algorithm to the successive complex derivatives
of a harmonic mapf : M → S

n
1. This will give rise to the so-calledharmonic sequenceof

f (cf. [7,8,10]).
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Let n ≥ 3 andf : M → S
n
1 a harmonic map of a Riemann surface. Fixed a complex

chartz : U ⊂ M → C for j = 1,2, . . . define

f0 = f

fj+1 = ∂fj − 〈∂fj, fj〉
‖fj‖2 fj.

(7)

Condition〈f, f 〉 = 1 implies

〈∂f, f 〉 = 〈∂̄f, f 〉 = 0 (8)

so that f1 = ∂f . Note that fj+1 is just the component of∂fj which is orthog-
onal to fj so that 〈fj, fj+1〉 = 0 for j ≥ 0. It follows from (7) that fj(p) ∈
spanC{∂f (p), ∂2f (p), . . . , ∂jf (p)} for every pointp in the domain offj. From now one
we dropp and write simply

fj ∈ spanC{∂f, ∂2f, . . . , ∂jf }.
Clearlyfj+1 is defined in(7) away the zeros of‖fj‖2. These points coincide with the so-
calledhigher-order singularities of f(cf. [6,7,12,24]). Note that in our situation the square
norms‖fj‖2 might be negative or zero even iffj �= 0. The following Lemma establishes
the orthogonality of the sequence{fj} and shows that the squared norms‖fj‖2 are positive
open-densely.

Lemma 3.1. Let M be a connected Riemann surface andf : M → S
n
1 for n ≥ 3 a non-

constant harmonic map with isotropy dimensionr ≥ 1. Fixed a complex chart(U, z) of
M, algorithm(7) generatesCn+1

1 -valued mapsf1, f2, . . . , fr defined on an open and dense
subset of U satisfying the following properties:

(i) For each1 ≤ j ≤ r the zeros offj are isolated in U and||fj||2 > 0 on an open and
dense subset of U.

(ii) 〈fi, fj〉 = 0 for 0 ≤ i �= j ≤ r.

Proof. We proceed by (finite) induction so that for 1≤ k ≤ r consider the statementP(k):
Algorithm (7)generatesCn+1

1 -valued mapsf1, f2, . . . , fk defined on an open dense subset
of U satisfying the following properties:

(i) for each 1≤ j ≤ k the zeros offj are isolated inU and‖fj‖2 > 0 on an open and dense
subset ofU.

(i) 〈fi, fj〉 = 0 for 0 ≤ i �= j ≤ k.

We prove first thatP(1) is true: Iff1 = ∂f ≡ 0 on an open subsetU ′ ⊂ U, then

∂kf = ∂̄kf ≡ 0, k = 1,2, . . .

onU ′. Fixed a pointp ∈ U ′ one can assume thatz(p) = 0 post-composingzwith a trans-
lation if necessary. Now sincef is real analytic we consider its Taylor expansion nearp,
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f (z, z̄) = f (0,0) + ∂f (0,0)z + ∂̄f (0,0)z̄ + 1
2! (∂

2f (0,0)z2 + 2∂∂̄f (0,0)zz̄

+ ∂̄2f (0,0)z̄2) + 1
3! (∂

3f (0,0)z3 + 3∂2∂̄f (0,0)z2z̄ + 3∂∂̄2f (0,0)zz̄2

+ ∂̄3f (0,0)z̄3) + · · · (9)

Taking into account the harmonic map equation(5) we see that each term of the Taylor
series above is zero exceptf (0,0) and hencef is constant on the open setU ′ ⊂ U and so it
is constant onM. This shows that the zeros off1 must be isolated inU.

Let us now analyze the sign of‖f1‖2 on the open and dense subsetU ′′ ⊂ U on which
f1 �= 0. Writef1 = A + iB with A,B real vectors.1 Then〈f1, f1〉c ≡ 0 is equivalent to

‖A‖2 = ‖B‖2, 〈A,B〉 = 0.

If ‖A‖2(p) = ‖B‖2(p) < 0 for somep ∈ U ′′ then{A(p), B(p)} would span a real time-like
2-plane contained inTf (p)S

n
1 which is impossible. Therefore‖f1‖2 ≥ 0 onU.

Note that if there were some pointp ∈ U ′′ with ‖A(p)‖2 = ‖B(p)‖2 = 0 and
{A(p), B(p)} linearly independent, then{A(p), B(p)} would span a real light-like 2-plane
in Tf (p)S

n
1 which is also impossible.

Now consider the (closed) setO of pointsp ∈ U ′′ such that‖A(p)‖2 = ‖B(p)‖2 = 0
and{A(p), B(p)} is a linearly dependent set. We claim thatO consists of isolated points in
U ′′. Assume that there is some open subsetV ⊂ U such thatV ⊂ O. Then we can write
f1|V = γA with γ a complex non-vanishing function onV . Taking∂̄-derivative off1 using
the harmonic map Eq.(5) and∂̄A = ∂A we get

∂A ∈ spanC{A} (10)

throughoutV . Hence∂jf ∈ spanC{A} onV for everyj ≥ 1. Consequently onV

〈∂if, ∂jf 〉c = 0, 2 ≤ i + j, i, j = 1,2, . . .

contradicting the fact thatf has (finite) isotropy dimensionr ≥ 1. This proves our claim and
so we conclude that‖f1‖2 = 2‖A‖2 = 2‖B‖2 > 0 must hold on an open and dense subset
of U. We have proved part (i) ofP(1). Part (ii) is consequence of(8).

Now let 1< k and assume thatP(k) is true. Then ifk = r the proof is complete. So
let k < r and note that from(7) fk+1 is defined on the domain of definition offk except
possibly at isolated points at which‖fk‖2 = 0, hence on a dense open subset ofU. We
claim that the zeros offk+1 are isolated inU. Suppose on the contrary thatfk+1 ≡ 0 on an
open subsetU ′ ⊂ U. Then by definition offk+1 this is equivalent to

∂k+1f ∈ spanC{∂f, . . . , ∂kf }

onU ′. Hence the following is true onU ′:

∂k+sf ∈ spanC{∂f, . . . , ∂kf } ∀s ≥ 1. (11)

1 A = 1
2

∂
∂x

andB = − 1
2

∂
∂y

.
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Now recall thatf has isotropy dimensionr > k so that spanC{∂f (p), . . . , ∂kf (p)} is a
(complex) isotropic subspace ofTCf (p)S

n
1 for everyp ∈ U. Therefore from(11) we get

〈∂k+sf, ∂k+sf 〉c = 0 on U ′ for every s ≥ 1, which contradicts the fact thatf has (finite)
isotropy dimensionr ≥ 1.

Let us now analyze the sign of‖fk+1‖2 on the open and dense subsetU ′′ ⊂ U on which
fk+1 �= 0. Writefk+1 = A + iB with A andB real vectors and recall that sincek + 1 ≤ r,
fk+1 is (complex) isotropic:〈fk+1, fk+1〉c = 0. This is equivalent to

‖A‖2 = ‖B‖2, 〈A,B〉 = 0.

Thus if ‖A(p)‖2 = ‖B(p)‖2 < 0 for somep ∈ U ′′, then{A(p), B(p)} would be linearly
independent spanning a real time-like 2-plane contained inTf (p)S

n
1 which is impossible.

Hence‖fk+1‖2 ≥ onU ′′.
Note also that there is nop ∈ U ′′ for which ‖A(p)‖2 = ‖B(p)‖2 = 0 and such that

{A(p), B(p)} is linearly independent. Otherwise{A(p), B(p)} would span a real light-like
2-plane inTf (p)S

n
1.

Now letO be the (closed) set of pointsp ∈ U ′′ satisfying‖A(p)‖2 = ‖B(p)‖2 = 0 and
{A(p), B(p)} is linearly dependent. We claim thatO consists of isolated points inU. For,
assume that there is an open subsetV ⊂ U such thatV ⊂ O. Then we can writefk+1|V = γA

with γ a complex non-vanishing function onV . This condition is equivalent to

∂k+1f = γA +
k∑

j=1

aj∂
jf (12)

on V , wherea1, . . . , ak are non-identically vanishing complex functions. Taking the∂̄-
derivative of∂k+1f in (12) and using the harmonic map equation(5) on V , we conclude
that

∂̄A ∈ spanC{A, f, ∂f, . . . , ∂kf }. (13)

From(13)and∂̄A = ∂A we obtain

∂A ∈ spanC{A, f, ∂f, ∂̄f, . . . ∂kf, ∂̄kf }. (14)

Finally using(14) and (12)once more we see that the following holds throughoutV ,

∂k+sf ∈ spanC{A, f, ∂f, ∂̄f, . . . , ∂kf, ∂̄kf } ∀s ≥ 2 (15)

Recall thatk + 1 ≤ r hencer + 1 = k + s for somes ≥ 2 then we have

〈∂r+1f, ∂̄jf 〉 = 〈∂r+1f, ∂jf 〉c = 0, 0 ≤ j ≤ k

onV , since the isotropy dimension off is r ≥ 1 andr + 1 ≤ r + 1 + j ≤ 2r + 1. This says
that∂r+1f is orthogonal onV to the subspace spanC{f, ∂̄f, ∂̄2f, . . . , ∂̄kf }. Then from(15)
we conclude that onV

∂r+1f ∈ spanC{A, ∂f, . . . , ∂kf },
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which clearly is an isotropic subspace. In particular〈∂r+1f, ∂r+1f 〉c = 0 contradicting the
fact thatf has isotropy dimensionr ≥ 1. This proves our claim.

We finally conclude that the last possibility must hold, namely‖fk+1‖2 = 2‖A‖2 =
2‖B‖2 > 0 on a dense and open subset ofU. We have then proved part (i) of statement
P(k + 1). To prove part (ii) ofP(k + 1) note first that sinceP(k) is true

〈fi, fj〉 = 0, 0 ≤ i �= j ≤ k.

Also from(7) we get

〈fj, fk+1〉 = 〈fj, ∂fk〉, j = 0, . . . , k − 1,

〈fk, fk+1〉 = 0.

Computing 0= ∂̄〈fj, fk〉 = 〈∂̄fj, fk〉 + 〈fj, ∂fk〉 for 0 ≤ j ≤ k − 1 we obtain

〈fj, ∂fk〉 = −〈∂̄fj, fk〉, 0 ≤ j ≤ k − 1. (16)

On the other hand, using(7)and the orthogonality relations (ii) in statementP(k) and taking
into account that

0 = ∂̄〈fj, fj−1〉 = 〈∂̄fj, fj−1〉 + 〈fj, ∂fj−1〉.

it easily follows that

∂̄fj = − ‖fj‖2

‖fj−1‖2fj−1, 0 ≤ j ≤ k

Plugging this into(16) implies that 〈fj, fk+1〉 = 0 for 0 ≤ j ≤ k. This shows that
f0, f1, . . . , fk+1 are mutually orthogonal thus proving thatP(k + 1) is true. This com-
pletes the proof of the Lemma.�

Remark 3.1. As consequence ofLemma 3.1for n ≥ 3 every harmonic mapf : M → S
n
1

with isotropy dimensionr ≥ 1 is space-like and dfp is nonsingular for every pointp in an
open and dense subset ofM. In particularg = f ∗〈 , 〉 is defines a Riemannian metric (the
induced metric) onMwith isolated singularities. ConsideringM equipped with the induced
metricg thenf : M → S

n
1 is a branched2 isometric minimal space-like immersion[24].

When dfp is non-singular for everyp ∈ M the harmonic mapf is called simply a minimal
immersion. Such maps are also called stationary (cf.[2]).

Now observe that if the isotropy dimension off is r ≥ 1 the finite sequencef0, f1, . . . , fr

satisfies

〈fi, fj〉c = 0, 1 ≤ i, j ≤ r. (17)

2 p is a branch point off if dfp = 0.
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Also byLemma 3.1we know thatf0, f1, . . . , fr satisfies the orthogonality relations

〈fi, fj〉 = 0, 0 ≤ i �= j ≤ r (18)

Both conditions together imply that

f̄r, f̄r−1, . . . , f̄1, f0, f1, f2, . . . , fr−1, fr

are mutually orthogonal therefore, 2r ≤ n. Moreover using(7), orthogonal relations(18)
and (17)it follows thatfr+1 andfr+1 are both orthogonal to the complex subspace

spanC{f̄r, f̄r−1, . . . , f̄1, f0, f1, f2, . . . , fr−1, fr}

from which fr+1 ≡ 0 if 2r = n. In this case we shall say thatf is isotropic (cf. [15]). It
follows thatf : M → S

n
1 is isotropic if and only if

〈∂αf, ∂βf 〉c = 0 ∀α, β ≥ 0 such that 1≤ α + β

Such maps are also calledsuperminimalor pseudo-holomorphic(cf. [4,20]). Well-known
examples of isotropic maps are harmonic maps from the Riemann sphere intoS

n
1. For

instance in[15] the author proves that every harmonic mapf : S
2 → S

n
1 is isotropic.

If 2r < n the orthogonality offr+1 and fr+1 is measured by the complex function
ϕr+1 =: 〈fr+1, fr+1〉c = 〈∂r+1f, ∂r+1f 〉c which does not vanish identically sincef has
isotropy dimensionr. Note that as consequence of the harmonic map equation(5) ϕr+1 is
a holomorphic function and so its zeros are isolated.

In what follows forn ≥ 2 putn = 2m or n = 2m − 1, with m ≥ 1. A harmonic map
f : M → S

n
1 is calledsuperconformalwhen it has isotropy dimensionr = m − 1. Note that

this terminology is rather confusing when applied to the extreme case of a mapf : M → S
2
1,

since it is superconformal if it is nowhere conformal. For anym ≥ 2 superconformal har-
monic maps intoS2m

1 or S
2m−1
1 are (weakly) conformal hence they are space-like maps. For

f superconformal harmonic,Q = ϕm dz2m = 〈fm, fm〉c dz2m is called the (holomorphic)
2mth Hopf differential off.

Note, for example, that a (weakly) conformal harmonic mapf : M → S
4
1 is either

isotropic or superconformal. Recall here that the four-dimensional De Sitter spaceS
4
1 is

recognized as the space of oriented 2-spheres inS
3 and conformal mapsf : M → S

4
1 are

(conformal) Gauss maps of immersed surfaces inS
3 (cf. [1,21]).

Let f : M → S
3
1 be a conformal minimal immersion. Fixed the induced metricg =

f ∗〈 , 〉 onM, the second fundamental form off is given byβ = −〈df, dn〉, wheren is a
locally defined normal vector field alongf with 〈n,n〉 = −1 (suchn exist sincef is space-
like). On a local complex chart (U, z = x + iy) the matrix ofβ respect to the orthonormal
basise1 = 1

2‖f1‖2
∂
∂x

, e2 = 1
2‖f1‖2

∂
∂y

is given by

B = 1

2‖f1‖2

(
〈fxx,n〉 〈fxy,n〉
〈fxy,n〉 −〈fxx,n〉

)
.
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Letϕ2 dz4 be the 4th-Hopf differential off. Thenϕ2 = 〈∂2f, ∂2f 〉c = −〈∂2f,n〉2 and hence

|ϕ2| = ‖f1‖4

8 D, whereD = 1
‖f1‖4 (〈fxx,n〉2 + 〈fxy,n〉2) is the discriminant of the charac-

teristic equation det(B − λI) = 0. A umbilic point of the immersed surfacef (M) is by
definition a zero ofD. Therefore a conformal minimal immersionf : M → S

3
1 is super-

conformal if and only if it has only isolated umbilic points.
In the following result, we summarize the main properties of the sequence{fj} generated

by (7) from a superconformal harmonic mapf : M → S
n
1, n ≥ 3.

Corollary 3.2. Let f : M → S
n
1 be a superconformal harmonic map, wheren = 2m or

n = 2m − 1 andm ≥ 2.Letf0, f1, f2, . . . , fm be the finite sequence generated on a local
complex chart(U, z) by (7). Defining

f−j := (−1)j
f̄j

‖fj‖2 , 1 ≤ j ≤ m, (19)

the sequence{f−m, . . . , f−1, f0, f1, . . . , fm} satisfies
fj+1 = ∂fj − ∂ log‖fj‖2fj, −m ≤ j ≤ m − 1,

∂̄fj = − ‖fj‖2

‖fj−1‖2fj−1, −m + 1 ≤ j ≤ m,
(20)

and the following orthogonality relations:

〈fi, fj〉 = 0, for 0 < |i − j| ≤ 2m − 1,

〈fm, f−m〉 = (−1)m

‖fm‖2ϕm.
(21)

Moreover, for−(m − 1) ≤ j ≤ m − 1, ‖fj‖2 > 0 open densely on U.

Proof. (20)follows from(19) and (7)by straightforward computation.(21)is consequence
of Lemma 3.1 and (19). �

3.1. Harmonic sequences

In order to study global properties of superconformal harmonic maps of surfaces in De
Sitter space-times it is sometimes useful to extend the above construction to the whole
of M. Let C

2m+1
1 = C

2m+1
1 × M → M be the trivial bundle endowed with the canonical

connectionDXs = Xs for any smooth local sections of C
2m+1
1 andX ∈ TM. The mapf

determines the complex line subbundle

L0 = {(v, x) ∈ C
2m+1
1 : v ∈ Cf (x)}

equipped with the metric-compatible connection∇L0 = πL0 ◦ D, where the projection
π0 : C

2m+1
1 → L0 alongL⊥

0 is well defined since〈f, f 〉 = 1. By a well-knowntheorem
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of Koszul-Malgrange (see[14]), ∇L0 determines a unique compatible holomorphic struc-
ture onL0 such that a local smooth sections of L0 is holomorphic if and only if∇′′

L0
s = 0

for any complex coordinate where∇′′
L0

= πL0 ◦ ∂̄. Hences is holomorphic if and only if

∂̄s ∈ L⊥
0 . In particular, the harmonic map equation(5) implies thatf is a global holomorphic

section ofL0. On the other hand, the fibers ofL0 determine a mapϕ0 : M → CP
2m
1 by

ϕ0(x) = Cf (x). Sinceϕ0 is the composition off followed by the totally geodesic imbedding
S

2m
1 ↪→ CP

2m
1 , it results also harmonic.

Note that in general a complex vector subbundleE ⊂ C
n+1
1 can be equipped with the

Koszul-Malgrange (see[14]) holomorphic structure provided it is non-degenerate respect
to the ambient Hermitian indefinite inner product〈 , 〉. That is,E ∩ E⊥ = {0} fiberwise,
where⊥ denotes〈 , 〉-orthogonal complement.

The bundle operatorAL0 : TM ⊗ L0 → L⊥
0 given byAL0 = πL⊥

0
◦ D splits up into

its (0,1) and (1,0) partsA′
L0

= πL⊥
0

◦ ∂ and A′′
L0

= πL⊥
0

◦ ∂̄ according to the splitting
D = ∂ + ∂̄. It is not hard to check that these operators are related by

(A′
L0

)∗ = −A′′
L⊥

0
. (22)

Now sincef is a harmonic map,A′
L0

takes holomorphic sections ofL0 to holomorphic

sections ofL⊥
0 . This is equivalent to

A′
L0

◦ ∇′′
L0

= ∇′′
L⊥

0
◦ A′

L0
,

which also says thatA′
L0

is a holomorphic section of Hom(L0, L
⊥
0 ). Also by (22) A′′

L0
is

antiholomorphic.
Let L1 be the unique complex line subbundle ofC

2m+1
1 containing the image ofA′

L0
. It

is possible to defineL1 by continuity across the isolated zeros ofA′
L0

, henceL1 is a well-

defined non-degenerate complex line subbundle ofC
2m+1
1 on which the ambient metric

〈 , 〉 is positive definite byLemma 3.1. In particular it has a well-defined metric connection
∇L1 = πL1 ◦ D and hence a unique compatible holomorphic structure. It is clear thatA′

L0
sends holomorphic sections ofL0 to holomorphic sections ofL1, in particular from(7)
it follows that f1 = A′

L0
f0 is a local holomorphic section ofL1. In the same way the

image of the operatorAL1 = πL⊥
1

◦ D : L1 → L⊥
1 determines a unique non-degenerate

complex line subbundleL2 ⊂ C
2m+1
1 , on which the ambient inner product is also positive

definite. Thus it has also a well-defined metric connection∇L2 = πL2 ◦ D and hence a
unique compatible holomorphic structure. Also from(7)f2 = A′

L1
f1 is a local holomorphic

section ofL2. The process goes on producing a sequence of mutually orthogonal non-
degenerate holomorphic complex line subbundlesL1, L2, . . . , Lm−1 ⊆ C

2m+1
1 on which

the ambient inner product is positive definite. Thus each has a well-defined metric connection
∇Lj = πLj ◦ Dand a compatible holomorphic structure via the Koszul-Malgrange theorem.
Unfortunately this is not the case with the last complex subbundleLm containing the image
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of A′
Lm−1

which may degenerate at some points as occurs for example whenf : M → S
2m
1

is full.
On the other hand, the ambient inner product is also positive definite on the conjugate bun-

dlesL−j = L̄j for 1 ≤ j ≤ m − 1. Including the possibly degenerate subbundlesL−m,Lm

(on which the ambient inner product is not necessarily definite),Lemma 3.1implies that
the whole sequence{Lj : −m ≤ j ≤ m} satisfies orthogonality relations

Li⊥Lj for 0 < |i − j| ≤ 2m − 1. (23)

Also from (7) it follows that A′
Lj

: Lj → Lj+1 satisfiesA′
Lj

fj = fj+1. Further,
A′

Lj
: Lj → Lj+1 is a holomorphic bundle operator3 for −m + 1 ≤ j ≤ m − 2 since as

consequence of(7) it satisfies

A′
Lj

◦ ∇′′
Lj

= ∇′′
L⊥

j

◦ A′
Lj

.

In particular, the mapsϕj : M → CP
2m
1 given byϕj(x) = (Lj)x are harmonic for−m + 1 ≤

j ≤ m − 1 (cf. [10]).
The finite sequence of harmonic mapsϕj : M → CP

2m
1 , −(m − 1) ≤ j ≤ m − 1 is

called the harmonic sequence of the initial superconformal harmonic mapf : M → S
2m
1 .

4. Linear fullness

According to Ejiri[15], a mapf of a Riemann surfaceM to the De Sitter spaceSn
1 is said

to befull if f (M) is not contained in anon-degeneratehyperplaneH ⊂ R
n+1
1 . However it

might be contained in a degenerate hyperplane.

Theorem.[15] Let f : M → S
n
1, n ≥ 3 be a full isotropic harmonic map. Then, n is even

(= 2m) andf (M) is contained in a unique degenerate hyperplane ofR
2m+1
1 .

It is then interesting to look for analogous results for superconformal harmonic maps into
S
n
1. To begin with letf : M → S

2m
1 be a superconformal harmonic map such that its image

f (M) is contained in a proper vector subspaceV of R
2m+1
1 . Then for any local complex

coordinatezofM the complex higher order derivatives∂̄αf, ∂βf all lie in VC for all α, β ≥ 0
and soLj ⊂ VC for −m ≤ j ≤ m. Consequently

dimC
[
⊕m−1

j=−m+1Lj

]
+ dimC[Lm + L̄m] ≤ dimCV

C < 2m + 1,

whereVC is the trivial bundleVC = M × V . This inequality implies that dimC[Lm +
L̄m] = 1 (sincef is superconformal), and dimC VC = 2m. ThereforeLm = L̄m = L−m

3 A′′
Lj

: Lj → Lj−1 is a antiholomorphic bundle operator for−m + 2 ≤ j ≤ m − 1.
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andV is a hyperplane inR2m+1
1 . We have then the following orthogonal decomposition:

VC = W ⊕ Lm, (24)

in whichW =
[
⊕m−1

j=−m+1Lj

]
is a complex (2m − 1)-dimensional space-like subbundle of

VC.
An immediate application of the decomposition(24) is the following result which is the

natural counterpart of Ejiri’s theorem.

Theorem 4.1. The imagef (M) of a non (linearly) full superconformal harmonic map
f : M → S

2m
1 cannot be contained in any degenerate hyperplane ofR

2m+1
1 .

Proof. If the imagef (M) were contained in a degenerate hyperplaneV , then there would
be a nonzero light-like vectorn ∈ R

2m+1
1 such thatV = n⊥. Thenn ∈ V and according to

decomposition(24), the vectorn would be contained inLm since its orthogonal projection
ontoW is zero. ThenLm = Cn and soϕm ≡ 0 which is a contradiction. �

Remark 4.1.The above result implies in particular that Ejiri’s notion of fullness coincides
for superconformal harmonic maps with linear fullness in the usual sense, i.e. not having
image in any proper vector subspace.

Now if f : M → S
2m
1 is (linearly) full,f (M) is contained in no proper vector subspace

of R
2m+1
1 and hence we can decompose

C
2m+1
1 = W

⊥⊕[Lm + L̄m] (25)

from which it follows that dimC[Lm + L̄m] = 2 henceLm �= L̄m and soLm ⊕ L̄m is a two-
dimensional non-degenerate complex bundle. Note thatW is a maximal complex space-like
bundle and hence the ambient pseudo-Hermitian metric ofC

2m+1
1 induces onLm ⊕ L̄m a

pseudo-Hermitian metric of signature (1,1) so thatLm ⊕ L̄m is isometric toC2
1.

On the other hand, iff is not full, thenf (M) is contained in a non-degenerate hyperplane
V and not in a proper subspace ofV by (24). Then eitherV is space-like and hence the
ambient metric is positive definite onLm, or V has signature (2m − 1,1) and the ambient
metric is negative definite onLm.

Proposition 4.2. Let f : M → S
2m
1 be a superconformal harmonic map. Then for every

local complex chart on M the following inequality holds:

| ‖fm‖2| ≤ |ϕm|. (26)

If f is not full then its image f(M) lies fully in a non-degenerate hyperplaneV ⊂ R
2m+1
1 and

equality holds in(26) for every local complex chart on M.

Proof. If f is full, let X =: f̄m − ϕ̄m

‖fm‖2fm. Then X is a non-zero section ofLm ⊕ L̄m

defined away the zeros of‖fm‖2 and satisfies〈X, fm〉 = 0. SinceLm ⊕ L̄m is isometric
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to C
2
1, then‖fm‖2 > 0 if and only if ‖X‖2 = ‖fm‖2 − |ϕm|2

‖fm‖2 < 0, from which we get

‖fm‖2 < |ϕm|. Also ‖fm‖2 < 0 if and only if ‖X‖2 > 0 and so‖fm‖4 < |ϕm|2, which
implies‖fm‖2 > −|ϕm|. We conclude that| ‖fm‖2| < |ϕm|.

In the non-full case dimC[Lm + L̄m] = 1, henceLm = L̄m. Then for any local complex
coordinate onM we havef̄m = λfm for some local complex functionλ. Thus|λ| = 1 and
ϕm = λ̄‖fm‖2. So that|ϕm|2 = ‖fm‖4 from which we get‖fm‖2 = ±|ϕm|. Combining
these two cases we obtain(26). �

In the next section, we shall be able to prove the converse: if equality holds on an
open subset (clearly equality holds at the isolated zeros ofϕm) then f cannot be linearly
full.

Remark 4.2. From the proof of(26)above it follows that̄Lm = Lm and hence the sequence
Lj generated by a non-full superconformal harmonic mapf : M → S

2m
1 is 2m-periodic:

L2m+j = Lj, j ∈ Z.

An easy consequence of this fact is that every superconformal harmonic mapf with target
an odd-dimensional De Sitter space-timeS

2m−1
1 is (linearly) full.

5. Normal curvatures

Here we use the information contained in the harmonic sequence of a superconformal
harmonic mapf : M → S

2m
1 to study the behaviour of the Gaussian and normal curvatures

of f. We will recognize these invariants to be the curvatures of the complex line bundlesLj

determined byf.
Throughout we shall make use of some notions and facts which hold for harmonic maps

of surfaces into Riemanniann-space forms, details of which may be found, for instance, in
[6,8]. However, to keep the paper at a reasonable length, we shall omit the proofs since thanks
to Lemma 3.1, the relevant parts of that discussion carry over to the case of superconformal
harmonic mapsf : M → S

n
1.

Let f : M → S
2m
1 , m ≥ 2 be a superconformal harmonic map. Fix the induced metric

g onM, thenf is a (branched) space-like harmonic (or minimal) isometric immersion (cf.
Remark 3). Therefore the computations that follows can be carried out away the isolated sin-
gularities of the induced metricg. Let∇ be the pseudo-Riemannian Levi–Civita connection
of S

2m
1 determined by the Lorentz metric and consider the pull-back bundle

T = f ∗(TS
2m
1 ) ⊂ R

2m+1
1 = R

2m+1
1 × M

with the pull-back connection denoted also by∇ and the pull-back Lorentz metric〈 , 〉. The
subspace ofTp generated by the∇-derivatives off up to orderj is called thejth osculating

space atp ∈ M and is denoted byT j
p (note thatT 1

p = dfp(TM)). ClearlyT j
p is a subspace of

T
j+1
p and the orthogonal complement ofT

j
p in T

j+1
p , denoted byNj

p is called thej-normal
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space atp. Then

T j
p = T j−1

p ⊕ Nj−1
p , 2 ≤ j ≤ m. (27)

At “generic” points one can consider thejth osculating bundleT j with 2j-dimensional
fibersT j

p and also thejth normal bundleNj with two-dimensional fibersNj
p. A point p is

called generic if the fiber ofT j overp coincides with thejth osculating space atp. It is
shown that the set of generic points is open and dense inM. The set of non-generic points,
also called higher-order singularities off, consists of isolated points (cf.[12,23]).

For 1≤ j ≤ m − 1 the fibers of each complex line bundleLj determined byfare isotropic
complex lines inC2m+1

1 on which the ambient pseudo-Hermitian metric is positive definite
by Lemma 3.1. Hence eachLj, 1 ≤ j ≤ m − 1, may be identified with an oriented real
space-like 2-plane subbundle ofR

2m+1
1 in the following way: Lj has a local holomor-

phic sectionfj generated on a local complex chart (U, z) by (7). Define real vector fields
F2j−1, F2j onU such that

fj = ‖fj‖√
2

(F2j−1 − iF2j) (28)

Since 〈fj, fj〉c = 0, the fields are orthogonal〈F2j−1, F2j〉 = 0 and of unit norm
‖F2j−1‖2 = ‖F2j‖2 = 1. Thus forj = 1, F1, F2 are local generating sections of the first
osculating bundle or tangent bundleT 1 = df (TM) of f, and for 2≤ j ≤ m − 1,F2j−1, F2j
are local generating sections of the (j − 1)th normal bundleNj−1 of f [6,8,12,23]. This
establishes the identification ofL1 with df (TM) and ofLj with Nj−1 for 2 ≤ j ≤ m − 1.

By the above identifications the orthogonal direct sum (complex) maximal isotropic
space-like subbundle

L1 ⊕ L2 ⊕ · · · ⊕ Lm−1 ⊂ TC

identifies with (m − 1)th osculating bundleTm−1 ⊂ T of f. Note also from(28) that

df (TM)C = L̄1 ⊕ L1, (Nj−1)C = L̄j ⊕ Lj, 2 ≤ j ≤ m − 1.

It follows from Lemma 3.1and our discussion above thatTm−1 is a real space-like (hence
non-degenerate) 2(m − 1)-dimensional vector subbundle ofT . Now if f is full, we have
Tm = T and by(27) the last normal bundleNm−1 = (Tm−1)⊥ of f is a real non-degenerate
oriented Lorentz 2-plane subbundle ofT . That is, the restriction of the Lorentz metric to
the fibers ofNm−1 has signature (1,1) and soNm−1 is isometric toR2

1. Then there are local
generating sectionsF2m−1, F2m of Nm−1 onU satisfying

〈F2m−1, F2m〉 = 0, ‖F2m−1‖2 = −‖F2m‖2 = 1. (29)

In particular (Nm−1)C = L̄m ⊕ Lm and hence there are (local) functionsα, β such that

fm = αF2m−1 − βF2m, (30)

so thatLm identifies withNm−1.
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Note that the direct sum subbundleL2 ⊕ L3 ⊕ · · · ⊕ Lm identifies with the normal bun-
dle

ν(f ) = N1 ⊕ N2 ⊕ · · · ⊕ Nm−1

of f and∇ restricted toν(f ) coincides with the normal connection∇⊥ on ν(f ). Also ∇
restricted toT 1 coincides with the Levi–Civita Riemannian connection onM determined
by the induced metricg. The projection of∇⊥ onto each normal 2-plane subbundleNj−1

defines a metric-compatible connection∇⊥
j−1, 2 ≤ j ≤ m. Hence∇⊥

j−1 is Riemannian for

2 ≤ j ≤ m − 1 whereas∇⊥
m−1 is pseudo-Riemannian or Lorentzian.

Let ωj = 〈∇⊥
j−1F2j, F2j−1〉 be the connection forms ofT 1 (j = 1) andNj−1 (for

2 ≤ j ≤ m − 1). Then the respective curvature functions are given by dωj = Kj dA where
dA = 2‖f1‖2 dx ∧ dy is the area element of the induced metricg respect to a local com-
plex coordinatez = x + iy (cf. [23]). If we let σj =: 〈∂F2j, F2j−1〉, then straightforward
computation shows thatωj = 2 Re(σj dz) from which dωj = −4 Im(∂̄σj) dx ∧ dy follows.
Both expressions together yield

Kj = − 2

‖f1‖2 Im(∂̄σj), 1 ≤ j ≤ m − 1. (31)

Now from ∂〈F2j, fj〉 = 〈∂F2j, fj〉 and(28), we obtain i∂‖fj‖ = ‖fj‖σj or equivalently,

∂ log‖fj‖2 = −2iσj.

Taking ∂̄-derivative of this last expression and using(31)we get

Kj = −1

2
9g log‖fj‖2 forj = 1, . . . , m − 1, (32)

where9g = 2‖f1‖−2∂∂̄ is the Laplacian of the induced metricg = 2‖f1‖2 dzdz̄ onM.
Note in particular thatK1 is just the Gauss curvature of the induced metricg onM.

Remark 5.1.As shown in[6] it follows thatKj is the curvature ofLj respect to its metric-
compatible connection∇Lj defined in the previous sections.

The computation of the last normal curvatureKm is slightly more involved than that
of K1, . . . , Km−1. Km is defined as in the previous cases by dωm = Km dA whereωm =
〈∇⊥

m−1F2m, F2m−1〉 is the curvature form of the last normal bundleNm−1, and dA is the area
element of the induced metricg. Definingσm = 〈∂F2m, F2m−1〉, then respect to a complex
coordinatez = x + iy one obtains dωm = −4 Im(∂̄σm) dx ∧ dy. Then

Km = −2‖f1‖−2 Im(∂̄σm). (33)

Another expression forKm can be obtained by computinḡ∂σm. First we need the following
result.

Lemma 5.1. ∂fm ∈ Lm ⊕ Lm ⊕ L−m+1.
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Proof. Since〈fm, fj〉 = 0 for −m + 1 ≤ j ≤ m − 1 then

0 = ∂〈fm, fj〉 = 〈∂fm, fj〉 + 〈fm, ∂̄fj〉 = 〈∂fm, fj〉 − ‖fj‖2

‖fj−1‖2 〈fm, fj−1〉.

Hence〈∂fm, fj〉 = ‖fj‖2

‖fj−1‖2 〈fm, fj−1〉 and consequently〈∂fm, fj〉 = 0 for −m + 2 ≤ j ≤
m − 1. �

Now the projection of∂F2m ontoL−m+1 = L̄m−1 can be obtained as follows:

0 = ∂〈F2m, fm−1〉 = 〈∂F2m, fm−1〉 + 〈F2m, ∂fm−1〉

Since∂fm−1 = fm + ∂ log‖fm−1‖2 · fm−1, we have〈∂F2m, fm−1〉 = −〈F2m, fm〉 and so
the projection of∂F2m ontoL−m+1 is given by−β‖fm−1‖−2 · fm−1. In the same way we
deduce that the projection of∂F2m−1 ontoL−m+1 is given by−α‖fm−1‖−2 · fm−1. Taking
∂-derivative in(30) we applyLemma 5.1to conclude that∂F2m, ∂F2m−1 ∈ Lm ⊕ Lm ⊕
L−m+1. Summing up we obtain

∂F2m−1 = σmF2m − α‖fm−1‖−2 · fm−1,

∂F2m = σmF2m−1 − β‖fm−1‖−2 · fm−1.
(34)

Plugging these two equations into

∂̄σm = 〈∂̄∂F2m, F2m−1〉 + 〈∂F2m, ∂F2m−1〉, (35)

we obtain

Im(∂̄σm) = −Im(α.β̄)‖fm−1‖−2,

which inserted in(33)produces the following formula for the last normal curvature:

Km = 2‖f1‖−2‖fm−1‖−2 Im(αβ̄). (36)

Remark 5.2.Whenf : M → S
2m
1 is not full, it follows from the proof ofTheorem 5.4in

the next section, thatKm ≡ 0 and dimNm−1 = 1.

Proposition 5.2. The Gaussian and normal curvaturesK1,K2, . . . , Km of a superconfor-
mal map f satisfy the following identities:

m−1∑
j=1

Kj − 1 = −‖f1‖−2‖fm−1‖−2(|α|2 − |β|2), (37)


1 −

m−1∑
j=1

Kj


2

+ K2
m = ‖f1‖−4‖fm−1‖−4|ϕm|2. (38)
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Proof. The proof depends on the compatibility or integrability equations

∂∂̄fj = ∂̄∂fj (39)

satisfied by the (finite) sequencef1, . . . , fm generated by the superconformal harmonic
mapf : M → S

2m
1 . We introduce functionsu0 = 0 anduj =: log‖fj‖, 1 ≤ j ≤ m − 1,

andα, β such thatfm = αF2m−1 − βF2m. Then using(7) and straightforward calculation,
the integrabilityconditions (39)are given in terms ofuj, α, β andσm by the following
system of PDE:

2∂∂̄uj = e2(uj+1−uj) − e2(uj−uj−1), j = 1, . . . , m − 2,

2∂∂̄um−1 = (|α|2 − |β|2)e−2um−1 − e2(um−1−um−2),

Im(∂̄σm) = −e−2um−1 Im(αβ̄),

∂̄α = σ̄mβ,

∂̄β = σ̄mα.

(40)

Using(32) and (36)and the above system we obtain the normal curvatures in terms ofuj

andα, β:

Kj = e−2u1[e2(uj−uj−1) − e2(uj+1−uj)], j = 1, . . . , m − 2,

Km−1 = e−2u1[e2(um−1−um−2) − (|α|2 − |β|2)e−2um−1],

Km = 2e−2u1e−2um−1Im(αβ̄).

(41)

From which the sum of the firstm − 1 curvatures gives(37). Squaring(36) and (37)we
obtain identity(38). �

Corollary 5.3. Away the zeros of the complex Hopf differentialQ the normal curvatures
of a superconformal harmonic mapf : M → S

2m
1 satisfy the following identity:

9g log




1 −

m−1∑
j=1

Kj


2

+ K2
m


 = 4(K1 + Km−1). (42)

Proof. Away the zeros ofQ, we can take logarithm at both sides of identity(38)and apply
the Laplacian9g. Then since log|ϕm|2 is a (local) harmonic function onM, we obtain
(42). �

Remark 5.3.The above identity generalizes formula (1) in Theorem (i) of the paper of
Sakaki[22]. Identity (42) implies that the metric ds2 = ((1 −∑m−1

j=1 Kj)2 + K2
m)(1/4)g, (g

the induced metric) has curvatureKm−1 · (1 −∑m−1
j=1 Kj)2 + (K2

m)(1/4) at points where
Q �= 0.

As an application of(37)we obtain the following result.
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Theorem5.4. Letf : M → S
2m
1 bea superconformal harmonicmapof aRiemann surface.

ThenKm ≡ 0 if and only if f(M) lies fully in a (unique) nondegenerate hyperplaneV . In
this case

(a)
∑m−1

j=1 Kj − 1 ≥ 0 if and only if the inducedmetric onV has signature(2m − 1,1)and

f is superconformal harmonic full intoS2m−1
1 (V ).

(b)
∑m−1

j=1 Kj − 1 ≤ 0 if and only ifV is space-like and f is a superconformal harmonic

full into the Euclidean unit sphereS2m−1(V ) ⊂ V .

In both cases identity(38) implies that
∑m−1

j=1 Kj = 1can occur only at the zeros of Qwhich
are isolated.

Remark 5.4. Note from(37)that the sign of
∑m−1

j=1 Kj − 1 depends on the sign of‖fm‖2 =
|α|2 − |β|2.

Proof of Theorem 5.4. Let f : M → S
2m
1 be superconformal harmonic. Iff is not full

we know byTheorem 4.1that its imagef (M) lies fully in a non-degenerate hyperplane
V ⊂ R

2m+1 and hence equality holds in(26) for every local complex chart onM. In terms
of the functionsα andβ introduced before, this equality becomes|α2 − β2| = ||α|2 − |β|2|.
This forces Im(αβ̄) = 0 and so,Km ≡ 0 by (36).

Conversely, ifKm ≡ 0, the last normal bundleNm−1 is ∇⊥
m−1-flat and hence it is pos-

sible to choose local∇⊥
m−1-parallel sectionsF2m−1, F2m of the last normal bundleNm−1

satisfying(29). Thenσm ≡ 0 and soα, β result holomorphic by(40). Also σm ≡ 0 in (34)
yield

∂F2m−1 = −αe−2um−1fm−1,

∂F2m = −βe−2um−1fm−1.
(43)

Also fromKm ≡ 0 we have by(36)that Im(αβ̄) ≡ 0 which forces|α2 − β2| = ||α|2 − |β|2|,
whereϕm = α2 − β2 �≡ 0. Then eitherα �≡ 0 andtα = β for some real numbert �= ±1, or
α ≡ 0 andβ �≡ 0. In the first case we havefm = α(F2m−1 − tF2m) and the vectorn =
tF2m−1 − F2m is constant by(43). Thenn is orthogonal tofm and to the complex space-
like subbundleW = ⊕m−1

j=−m+1Lj defined in equation(24), in particular〈f (x),n〉 = 0 for

everyx ∈ M, and sof (M) is fully contained inV = n⊥ which is non-degenerate since
〈n,n〉 = t2 − 1 �= 0. From(37)we have

m−1∑
j=1

Kj − 1 = |α|2〈n,n〉e−2(u1+um−1). (44)

Hence
∑m−1

j=1 Kj ≥ 1 if and only if 〈n,n〉 > 0 if and only iff (M) is contained inV = n⊥
which is a (2m − 1,1) hyperplane. In this case since〈f, f 〉 = 1 it follows thatf : M →
S

2m−1
1 (V ) is a full superconformal harmonic map.
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On the other hand,
∑m−1

j=1 Kj ≤ 1 if and only if〈n,n〉 < 0 if and only iff (M) is contained

in V = n⊥ which is a space-like hyperplane andf : M → S
2m−1(V ) is a full superconfor-

mal harmonic map.
If α ≡ 0 andβ �≡ 0 we havefm = −βF2m and son = F2m−1 is a constant vector. This

case is then included in the case in which the imagef (M) is contained in a (2m − 1,1)
hyperplaneV . �

A frame of a mapf : M → S
n
1 is an applicationF : M → O(n,1) such thatπ ◦ F = f

whereπ : O(n,1) → S
n
1 is the projectionF → F0 = first column off. Whenf : M → S

n
1

is superconformal harmonic, the harmonic sequence off can be used to construct lo-
cal frames in a simple way. In fact on a local complex chart (U, z) of M defineF =
(F0, F1, . . . , F2m−1, F2m) by (28) and (30)so that the frameF is given by

F0 = f,

fj = ‖fj‖√
2

(F2j−1 − iF2j), 1 ≤ j ≤ m − 1,

fm = αF2m−1 − βF2m.

(45)

From the orthogonality relations satisfied byfj the real fieldsFj are mutually orthogonal
and of unit length, exceptF2m. The integrability or compatibility condition

∂∂̄F = ∂̄∂F

satisfied byf is the same as that of the harmonic sequence off (39) which in terms of the
functionsuj = log‖fj‖ is given by the system(40).

Away from the isolated zeros of the 2mth Hopf differential off it is possible to find a
local complex coordinate (U, z) which normalizesϕm, i.e.ϕm ≡ 1 onU (a proof of this fact
is given in[9]). In terms ofα andβ conditionϕm = 〈fm, fm〉c ≡ 1 is justα2 − β2 = 1 on
U. Thenξ be a complex function defined onU such thatα = coshξ andβ = sinhξ. Also
we define new local sectionsF ′

2m−1, F
′
2m of Nm−1 according to

F ′
2m−1 = cosh(r)F2m−1 + sinh(r)F2m,

F ′
2m = sinh(r)F2m−1 + cosh(r)F2m,

(46)

wherer = Re(ξ). It is easily seen that‖F ′
2m−1‖2 = −‖F ′

2m‖2 = −1 and〈F ′
2m−1, F

′
2m〉 = 0.

Then in this new frame we have

fm = cos(θ)F ′
2m−1 + i sin(θ)F ′

2m

so that α′ = cos(θ), β′ = −i sin(θ), where θ = Im(ξ). It then follows that‖fm‖2 =
cos2(θ) − sin2(θ) = cos(2θ).

Now note that the fourth and fifth compatibility equation in system(40) imply ∂̄θ =
iσm and hencē∂∂θ = −i∂̄σm. Also from the third equation of(40) we get Im(∂̄σ) =
− cos(θ) sin(θ)e−2um−1 from which we deduce thatθ must satisfy

2∂∂̄θ = − sin(2θ)e−2um−1. (47)
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We have then shown that in a local coordinate chart (U, z) whereϕm ≡ 1 it is possible to
find a local frame

F = (f, F1, F2, . . . , F2m−2, F
′
2m−1, F

′
2m)

such that the compatibility equations off become the following system of elliptic nonlinear
partial differential equations Toda type

2∂∂̄uj = e2(uj+1−uj) − e2(uj−uj−1), j = 1, . . . , m − 2,

2∂∂̄um−1 = cos(2θ)e−2um−1 − e2(um−1−um−2),

2∂∂̄θ = − sin(2θ)e−2um−1.

(48)

Then locally away from the zeros of the 2mth Hopf differentialQ = ϕm dz2m the geometry
of the superconformal harmonic mapf is completely determined from a solution of the above
system. The frameF = (F1, F2, . . . , F2m−2, F

′
2m−1, F

′
2m) is called a Toda frame (cf.[9]).

Now from(36) the last normal curvatureKm in terms ofθ is given by

Km = sin(2θ)e−2(u1+um−1), (49)

also from(37)we see that

m−1∑
j=1

Kj − 1 = −e−2(u1+um−1) cos(2θ). (50)

Thus at points where
∑m−1

j=1 Kj �= 1 we have

arctan

(
Km∑m−1

j=1 Kj − 1

)
= −2θ (51)

Applying the Laplacian9g to both sides of(51) we arrive at the following identity which
generalizes formula (3.1) obtained by Alı́as and Palmer[1].

9g arctan

(
Km∑m−1

j=1 Kj − 1

)
= 2Km. (52)

As an application of(52)we obtain the following.

Lemma 5.5. Let M be a compact connected Riemann surface andf : M → S
2m
1 a full

superconformal harmonic immersion for which
∑m−1

j=1 Kj �= 1 at each point of M. Then

∫
M

Km dA = 0.

Proof. Integrate identity(52) respect to dA and use the divergence theorem.�

Note that under the hypothesis of the lemma,Km �≡ 0 so thatKm is a signed function
onM.
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6. Congruence

An interesting question is to determine which invariants determine a superconformal
harmonic mapf : M → S

2m
1 up to ambient (pseudo)-isometries. We obtain the following

result which is generalizes Theorem 4.1 of[7].

Theorem 6.1. Let f, g : M → S
2m
1 be superconformal harmonic maps from a connected

Riemann surface. If they induce the same metric on M and have the same2mth Hopf
differentials, then there is an isometryΦ of S

2m
1 such thatΦ ◦ f = g.

Proof. Assume first thatf, g are full and introduce as in[7,17] (globally defined) real
forms

γj(f ) = τj(f ) dzdz̄, γj(g) = τj(g) dzdz̄,

whereτj(f ) = ‖fj+1‖2‖fj‖−2 andτj(g) = ‖gj+1‖2‖gj‖−2. Since by hypothesisf ∗〈 , 〉 =
g∗〈 , 〉 we haveγ0(f ) = γ0(g), andγ−1(f ) = γ−1(g). Then from system(48)on a complex
chart (U, z) one has

∂∂̄ log‖fj‖2 = τj − τj−1, j = 0,1 . . . , m − 1,

where‖fj‖2 = e2uj . From this using finite induction we see thatγ−1 andγ0 determineγj
for j = 1, . . . , m, for bothf andg. In particularτj(f ) = τj(g) for j = 0,1, . . . , m − 1, so
that‖fj‖2 = ‖gj‖2 for j = 0,1, . . . , m. On the other hand, by hypothesis we know that

〈fi, fj〉 = 〈gi, gj〉 = 0, 0 < |i − j| ≤ 2m − 1,

〈fi, f̄i〉 = 〈gi, ḡi〉 = 0, i = 1, . . . , m − 1,

〈fm, f̄m〉 = 〈gm, ḡm〉.

Now {fj, f̄j : j = 0, . . . , m} spanC
2m+1
1 so that there is a matrixA = A(z, z̄) ∈ U(2m,1)

such that

gj = Afj, ḡj = Af̄j, j = 0,1, . . . , m.

ThusA = Ā and using(7) we see that∂A = ∂̄A = 0 and soA is a constant matrix in
O(2m,1) such thatAf = g.

If f is not full, then its image is contained in a non degenerate hyperplaneV ⊂ R
2m+1
1 .

Assuming thatV is space-like then byTheorem 5.4we know that
∑m−1

j=1 Kj(f ) ≤ 1. Now
from the hypothesis and(41) it follows that Kj(f ) = Kj(g), j = 1, . . . , m − 1, there-
fore

∑m−1
j=1 Kj(g) ≤ 1. On the other hand respect to any local coordinate chart ofM

we have‖fm‖2 = |ϕm(f )| = |ϕm(g)| and also‖fm‖2 = ‖gm‖2. Hence‖gm‖2 = |ϕm(g)|
and soKm(g) ≡ 0. Applying Theorem 5.4once more, it follows thatg is not full and
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g(M) is contained also in a space-like hyperplaneV ′. Writing V = n⊥ andV ′ = n′⊥ with
〈n,n〉 = 〈n′,n′〉 = −1, there exists a matrixA = A(z, z̄) ∈ U(2m,1) satisfying

gj = Afj, ḡj = Af̄j, j = 0,1, . . . , m − 1, n′ = An.

Proceeding as before we can check thatA is real and constant so thatA ∈ O(2m,1) andAf =
g. If f (M) were contained in a hyperplane with induced metric of signature (2m − 1,1),
the proof follows an analogous argument.�

7. Polar maps

According toTheorem 5.4the image of a non-full superconformal harmonic mapf :
M → S

2m
1 lies fully in a non-degenerate hyperplaneV ⊂ R

2m+1
1 which may be either space-

like or have signature (2m − 1,1) in the induced metric. Then fromRemark 4the sequence
Lj generated byf is periodic:

L2m+j = Lj ∀j ∈ Z. (53)

Recall that the last line bundle off is non-degenerate and satisfiesLm = L̄m = L−m. These
facts allow us to define thepolar mapof f as follows. Thanks to inequality(26)on any local
complex chart we have‖fm‖2 = ±|ϕm| according to the signature of the metric induced
onV . Then we distinguish two cases:

(i) The hyperplaneV is space-like and consequently‖fm‖2 = |ϕm|. In particularfm and√
ϕm have the same order zeros so that one can extend the vector (fm/

√
ϕm) across its

singularities by continuity (cf.[20]). It can be easily checked that it is a real vector and
has square norm one. Moreover (fm/

√
ϕm) is independent of coordinates ofM. The polar

map off is then well defined by

f ∗ = fm√
ϕm

: M → S
2m−1(V ) ⊂ V, (54)

whereS
2m−1(V ) = {x ∈ V : 〈x, x〉 = 1} is the unit sphere ofV .

(ii) The induced metric on the hyperplaneV has signature (2m − 1,1) and so it is isometric
to R

2m
1 . Here note that the square norm offm is non-positive since‖fm‖2 = −|ϕm|.

Like in the previous case the vector (fm/
√
ϕm) can be extended by continuity across

its singularities and does not depend on local coordinates inM. However it is not a real
vector since as consequence off̄m = − ϕ̄m

|ϕm|fm we have,

(
fm√
ϕm

)
= − ϕmfm

|ϕm|√ϕm

= −
√
ϕmfm√
ϕmϕm

= − fm√
ϕm

.

In this case definingf ∗ = ±ifm√
ϕm

(i = √−1), it follows thatf ∗ is a real vector with square
norm−1 lying in V which is independent on local coordinates ofM. We define the polar
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map off in this case by

f ∗ = ±ifm√
ϕm

: M → H
2m−1(V ),⊂ V (55)

where the sign in(55)depends on a choice of one of the sheets of the hyperboloid{x ∈ V :
〈x, x〉 = −1} defining the hyperbolic spaceH2m−1(V ).

In both cases we show thatf ∗ is a harmonic map as follows. Away of the zeros of the
2mth Hopf differential off it is possible to find a local complex chart (U, z) respect to which
the 2mth Hopf differential is normalized:ϕm = 1 onU (cf. [9]). Then ifV is space like,
f ∗ = fm onU, and using the periodicity of the harmonic sequence off (53) it follows that
∂f ∗ is a local section ofL−m+1. In particular〈∂f ∗, ∂f ∗〉c = 0 which shows thatf ∗ is a
(weakly) conformal map. On the other hand, fromLemma 3.1and its corollary we get the
following conditions:

〈∂∂̄f ∗, fj〉 = 0, j �= m,

〈∂∂̄f ∗, f ∗〉 = −〈∂f ∗, ∂f ∗〉 ,

and so ∂∂̄f ∗ = −〈∂f ∗, ∂f ∗〉f ∗ which is the harmonic map equation forf ∗ : M →
S

2m−1(V ). The proof in the second case (ii) follows along the same lines as in case (i) but,
for f ∗ : M → H

2m−1(V ) the harmonic map equation is∂∂̄f ∗ = 〈∂f ∗, ∂f ∗〉f ∗ (cf. [17]).
On the other hand, using(53)andLemma 3.1we compute

ϕm=〈fm, fm〉c= − 〈fm+1, fm−1〉c= · · · =(−1)k〈fm+k, fm−k〉c = (−1)m〈f2m, f 〉.

From whichf2m = (−1)mϕmf . Normalizingϕm ≡ 1 respect to a local chart (U, z), we
havef2m = (−1)mf . Then iff (M) lies in a space-like hyperplaneV we havef ∗ = fm and
so〈f ∗

m, f ∗
m〉c = 〈f2m, f2m〉c = 1. Moreover,f ∗

j = fm+j, j = 1, . . . , m onU. Thusf ∗ is a
full superconformal map with the same 2mth Hopf differential asf.

If f (M) lies in a hyperplaneV of signature (2m − 1,1) the situation is analogous but
now f ∗ = ifm onU. In particularf ∗

j = ifm+j, j = 1, . . . , m and〈f ∗
m, f ∗

m〉c = −1 onU.
Note that in both casesL∗

j = Lm+j,∀j ∈ Z holds. We have thus proved the following.

Theorem 7.1.Letf : M → S
2m
1 be a non-full superconformal harmonic map. If the image

f (M) lies in a space-like hyperplaneV ⊂ R
2m−1
1 then the polar mapf ∗ = (fm/

√
ϕm) :

M → S
2m−1(V ) is a full superconformal harmonic map into the Euclidean unit sphere of

V which has the same 2mth Hopf differential as f.
If f(M) lies in a (2m − 1,1)-hyperplaneV ⊂ R

2m+1
1 then the polar mapf ∗ =

(±ifm/
√
ϕm) : M → H

2m−1(V ) is a full superconformal harmonic map in the sense of
[17]. In this case, the 2mth Hopf differentials of f andf ∗ have opposite signs.

In [17] superconformal harmonic maps of non-compact Riemann surfaces into real hy-
perbolic spaces were considered and harmonic sequences were constructed. Since there are
no non-constant harmonic maps of compact surfaces into real Hyperbolic spaces we obtain
the following corollary.
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Corollary 7.2. There exist no non-constant superconformal harmonic map of a compact
surface into odd-dimensional De Sitter space-timesS

2m−1
1 withm ≥ 2.

Proof. Note first that byRemark 4f is (linearly) full. Now viewS
2m−1
1 = S

2m
1 ∩ e⊥

0 and
considerf as a map with targetS2m

1 whose image is contained into the hyperplanee⊥
0 ⊂

R
2m+1
1 . Then sincee0 is space-like,e⊥

0 has signature (2m − 1,1) and hence the polar map
of f takes values in the hyperbolic space insidee⊥

0 which we denote simply byH2m−1.
SinceM is compact the polar mapf ∗ of f is constant and 0= 〈f (x), f ∗(x)〉 = 〈f (x), f ∗〉

for everyx ∈ M. Hencef (M) ⊂ V = (f ∗)⊥. This forcesfj ∈ V for everyj ∈ Z and in
particular〈fm, f ∗〉 = 0. Take a complex chart (U, z) in M such thatϕm = 1 onU. Then
f ∗ = ifm and hence 0= 〈fm, f ∗〉 = −i‖fm‖2 = i onU, which is a contradiction. �

Even the simplest casem = 2 in the above corollary is interesting. Recall from Section
3 that a conformal minimal immersionf : M → S

3
1 is superconformal if and only if its

umbilic points (if any) are isolated.

Corollary 7.3. There is no conformal minimal immersion of a compact surface Minto S
3
1

with isolated umbilic points.

The reader may find interesting to compare our results with those of polar maps for
harmonic maps of surfaces in Euclidean spheres which were studied in detail in the paper
by Miyaoka[20]. Further applications of polar maps of space-like surfaces in De Sitter
space-times will be considered in a future paper.

8. Superconformal minimal tori

Bolton and Woodward in[6] gave a new proof of a celebrated theorem by Calabi[13]
characterizing isotropic minimal full immersions or the two sphereS

2 in an Euclidean
n-sphere by computing the degrees of the line bundlesLj determined by the immersion.
On the other hand, Sakaki in[22] provided a characterization of minimal 2-tori in a four-
dimensional Lorentz space-form using a simplified version of identity(42). Inspired by both
papers we give here a characterization of superconformal minimal immersions of 2-tori in
S

2m
1 using essentially identity(42) combined with ideas from[6] and the machinery of

harmonic sequences developed in Section3.
We review without proofs from[6] the relationship between the harmonic sequence and

higher order fundamental forms of isotropic harmonic maps into a Riemannian space-form
which thanks toLemma 3.1can be applied to the case of superconformal harmonic maps
f : M → S

2m
1 .

Recall from Section5 that the direct sum complex bundleL1 ⊕ L2 ⊕ · · · ⊕ Lj identifies
with thejth osculating bundleT j of f whose fiber atp ∈ M (for generic points) is spanned
by the∇-derivatives off of order up toj atp. The higher fundamental forms off are defined
inductively as follows.
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Let F1 be theT 1-valued form defined byF1 = df . For 2≤ j ≤ m let Fj be theT j−1-
valuedj-form defined by

Fj(X1, X2, . . . , Xj) = [(∇XpF
j−1)(X1, X2, . . . , Xj−1)](T

j−1)⊥ ,

whereX1, X2, . . . , Xj are vector fields onM and∇ is covariant differentiation determined
by the connections on (T j−1)⊥ andS

2m
1 . It is shown in[6,8] thatFj is a symmetricj-form

and its complex extensioñFj to (TMC)⊗j satisfies

F̃ j(∂⊗, . . . ,⊗∂︸ ︷︷ ︸
j

) = fj, 1 ≤ j ≤ m,

wherefj is the holomorphic section ofLj. It is shown in[6] that F̃ j = fj dzj defines a
global holomorphic section of the complex tensor product bundle

Lj ⊗ L
−(j)
1 := Lj ⊗

j︷ ︸︸ ︷
L−1

1 ⊗ · · · ⊗ L−1
1 ,

whereL−1
1 denotes the complex line bundle with transition functionsg−1

ij , beinggij the
transition functions ofL1.

Letf : M → S
2m
1 be a full superconformal minimal immersion of a compact connected

Riemann surfaceMand assume that the immersionfhas no higher-order singularities. Hence
on each local domain chart (U, z), the square norms‖fj‖2 are positive for 1≤ j ≤ m − 1
by Lemma 3.1. If (1 −∑m−1

j=1 Kj)2 + K2
m > 0 holds on the whole ofM, then(42) holds

globally onM. Integrating(42) respect to the area form dA of the induced metricg onM
and using the divergence theorem we obtain

0 =
∫
M

9g log




1 −

m−1∑
j=1

Kj


2

+ K2
m


 dA = 4

∫
M

K1 dA + 4
∫
M

Km−1 dA.

Hence

0 =
∫
M

K1 dA +
∫
M

Km−1 dA. (56)

By the Gauss-Bonnet Theorem the first integral above equals 4π(1 − gen(M)) where
gen(M) = genus ofM.

On the other hand, note that

1

4π

∫
M

Km−1 dA =
∫
M

c1(Lm−1),



E. Hulett / Journal of Geometry and Physics 55 (2005) 179–206 205

where

c1(Lm−1, h) = 1

2πi
∂∂̄ log‖fm−1‖2dz ∧ dz̄

is the first Chern class of the complex line bundleLm−1 andh is a Hermitian metric onLm−1.
It is known that the cohomology class defined byc1(Lm−1, h) in H2(M,C) is independent
of the choice of a Hermitian metric onLm−1 (cf. [19]). Hence it is denoted simply by
c1(Lm−1) and the degree ofLm−1 is defined by deg(Lm−1) = ∫

M
c1(Lm−1).

Eq.(56)becomes

0 = 4π(1 − gen(M)) + 4π deg(Lm−1). (57)

On the other hand, sincec1(L−1
1 ) = −c1(L1) we have

c1(Lm−1 ⊗ (L−1
1 )(m−1)) = c1(Lm−1) − (m − 1)c1(L1). (58)

Hence integrating this equality onM, we obtain

4π deg(Lm−1) − 4π(m − 1)(1− gen(M)) = 4π deg(Lm−1 ⊗ (L−1
1 )(m−1)). (59)

Now since our immersionf has no higher-order singularities, thenF̃m−1 is a non-vanishing
globally defined holomorphic section of the complex tensor bundleLm−1 ⊗ (L−1

1 )(m−1).
Therefore the sum of the orders of the zeros ofF̃m−1 is zero or, equivalently deg(Lm−1 ⊗
(L−1

1 )(m−1)) = 0. Then from(59)we get

4π deg(Lm−1) = 4π(m − 1)(1− gen(M)),

which inserted in(57)gives

0 = 4πm(1 − gen(M)),

which forcesgen(M) = 1. We have thus proved

Theorem 8.1.Let M be a compact connected Riemann surface andf : M → S
2m
1 a full su-

perconformal minimal immersion having no higher-order singularities. If the Gaussian and
normal curvatures of f satisfy(1 −∑m−1

j=1 Kj)2 + K2
m > 0 on M, then M is(topologically)

a 2-torus.

Conversely, ifM is a 2-torus then passing to the universal covering spaceC ofM it is possi-
ble to normalizeϕm ≡ 1 globally onM. Hence if the full superconformal minimal immersion
f : M → S

2m
1 has no higher-order singularities, the inequality (1−∑m−1

j=1 Kj)2 + K2
m > 0

holds onM as a consequence of(38).
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